博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
吴恩达课后作业学习1-week4-homework-multi-hidden-layer -2
阅读量:6830 次
发布时间:2019-06-26

本文共 20841 字,大约阅读时间需要 69 分钟。

参考:https://blog.csdn.net/u013733326/article/details/79767169

希望大家直接到上面的网址去查看代码,下面是本人的笔记

 

实现多层神经网络

 

1.准备软件包

import numpy as npimport h5pyimport matplotlib.pyplot as pltimport testCases #参见资料包,或者在文章底部copyfrom dnn_utils import sigmoid, sigmoid_backward, relu, relu_backward #参见资料包 import lr_utils #参见资料包,或者在文章底部copy

为了和作者的数据匹配,需要指定随机种子

np.random.seed(1)

 

2.初始化参数

def initialize_parameters_deep(layers_dims):    """    此函数是为了初始化多层网络参数而使用的函数。    参数:        layers_dims - 包含我们网络中每个图层的节点数量的列表    返回:        parameters - 包含参数“W1”,“b1”,...,“WL”,“bL”的字典:                     W1 - 权重矩阵,维度为(layers_dims [1],layers_dims [1-1])                     bl - 偏向量,维度为(layers_dims [1],1)    """    np.random.seed(3)    parameters = {}    L = len(layers_dims)    for l in range(1,L):        parameters["W" + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) / np.sqrt(layers_dims[l - 1])        parameters["b" + str(l)] = np.zeros((layers_dims[l], 1))        #确保我要的数据的格式是正确的        assert(parameters["W" + str(l)].shape == (layers_dims[l], layers_dims[l-1]))        assert(parameters["b" + str(l)].shape == (layers_dims[l], 1))    return parameters

测试两层时:

#测试initialize_parameters_deepprint("==============测试initialize_parameters_deep==============")layers_dims = [5,4,3] #这个其实也是实现了两层parameters = initialize_parameters_deep(layers_dims)print(parameters)print("W1 = " + str(parameters["W1"]))print("b1 = " + str(parameters["b1"]))print("W2 = " + str(parameters["W2"]))print("b2 = " + str(parameters["b2"]))

返回:

==============测试initialize_parameters_deep=============={
'W1': array([[ 0.79989897, 0.19521314, 0.04315498, -0.83337927, -0.12405178], [-0.15865304, -0.03700312, -0.28040323, -0.01959608, -0.21341839], [-0.58757818, 0.39561516, 0.39413741, 0.76454432, 0.02237573], [-0.18097724, -0.24389238, -0.69160568, 0.43932807, -0.49241241]]), 'b1': array([[0.], [0.], [0.], [0.]]), 'W2': array([[-0.59252326, -0.10282495, 0.74307418, 0.11835813], [-0.51189257, -0.3564966 , 0.31262248, -0.08025668], [-0.38441818, -0.11501536, 0.37252813, 0.98805539]]), 'b2': array([[0.], [0.], [0.]])}W1 = [[ 0.79989897 0.19521314 0.04315498 -0.83337927 -0.12405178] [-0.15865304 -0.03700312 -0.28040323 -0.01959608 -0.21341839] [-0.58757818 0.39561516 0.39413741 0.76454432 0.02237573] [-0.18097724 -0.24389238 -0.69160568 0.43932807 -0.49241241]]b1 = [[0.] [0.] [0.] [0.]]W2 = [[-0.59252326 -0.10282495 0.74307418 0.11835813] [-0.51189257 -0.3564966 0.31262248 -0.08025668] [-0.38441818 -0.11501536 0.37252813 0.98805539]]b2 = [[0.] [0.] [0.]]

 

测试三层时:

#测试initialize_parameters_deepprint("==============测试initialize_parameters_deep==============")layers_dims = [5,4,3,2] #实现三层看看parameters = initialize_parameters_deep(layers_dims)print(parameters)print("W1 = " + str(parameters["W1"]))print("b1 = " + str(parameters["b1"]))print("W2 = " + str(parameters["W2"]))print("b2 = " + str(parameters["b2"]))print("W3 = " + str(parameters["W3"]))print("b3 = " + str(parameters["b3"]))

返回:

==============测试initialize_parameters_deep=============={
'W1': array([[ 0.79989897, 0.19521314, 0.04315498, -0.83337927, -0.12405178], [-0.15865304, -0.03700312, -0.28040323, -0.01959608, -0.21341839], [-0.58757818, 0.39561516, 0.39413741, 0.76454432, 0.02237573], [-0.18097724, -0.24389238, -0.69160568, 0.43932807, -0.49241241]]), 'b1': array([[0.], [0.], [0.], [0.]]), 'W2': array([[-0.59252326, -0.10282495, 0.74307418, 0.11835813], [-0.51189257, -0.3564966 , 0.31262248, -0.08025668], [-0.38441818, -0.11501536, 0.37252813, 0.98805539]]), 'b2': array([[0.], [0.], [0.]]), 'W3': array([[-0.71829494, -0.36166197, -0.46405457], [-1.39665832, -0.53335157, -0.59113495]]), 'b3': array([[0.], [0.]])}W1 = [[ 0.79989897 0.19521314 0.04315498 -0.83337927 -0.12405178] [-0.15865304 -0.03700312 -0.28040323 -0.01959608 -0.21341839] [-0.58757818 0.39561516 0.39413741 0.76454432 0.02237573] [-0.18097724 -0.24389238 -0.69160568 0.43932807 -0.49241241]]b1 = [[0.] [0.] [0.] [0.]]W2 = [[-0.59252326 -0.10282495 0.74307418 0.11835813] [-0.51189257 -0.3564966 0.31262248 -0.08025668] [-0.38441818 -0.11501536 0.37252813 0.98805539]]b2 = [[0.] [0.] [0.]]W3 = [[-0.71829494 -0.36166197 -0.46405457] [-1.39665832 -0.53335157 -0.59113495]]b3 = [[0.] [0.]]

 

3)前向传播

def L_model_forward(X,parameters):    """    实现[LINEAR-> RELU] *(L-1) - > LINEAR-> SIGMOID计算前向传播,也就是多层网络的前向传播,为后面每一层都执行LINEAR和ACTIVATION    参数:        X - 数据,numpy数组,维度为(输入节点数量,示例数)        parameters - initialize_parameters_deep()的输出    返回:        AL - 最后的激活值        caches - 包含以下内容的缓存列表:                 linear_relu_forward()的每个cache(有L-1个,索引为从0到L-2)                 linear_sigmoid_forward()的cache(只有一个,索引为L-1)    """    caches = []    A = X    L = len(parameters) // 2    for l in range(1,L):        A_prev = A         A, cache = linear_activation_forward(A_prev, parameters['W' + str(l)], parameters['b' + str(l)], "relu")        caches.append(cache)        #最后一层使用sigmoid函数进行二分类    AL, cache = linear_activation_forward(A, parameters['W' + str(L)], parameters['b' + str(L)], "sigmoid")    caches.append(cache)    assert(AL.shape == (1,X.shape[1]))    return AL,caches

 

上面函数使用的线性激活函数linear_activation_forward

def linear_activation_forward(A_prev,W,b,activation):    """    实现LINEAR-> ACTIVATION 这一层的前向传播    参数:        A_prev - 来自上一层(或输入层)的激活,维度为(上一层的节点数量,示例数)        W - 权重矩阵,numpy数组,维度为(当前层的节点数量,前一层的大小)        b - 偏向量,numpy阵列,维度为(当前层的节点数量,1)        activation - 选择在此层中使用的激活函数名,字符串类型,【"sigmoid" | "relu"】    返回:        A - 激活函数的输出,也称为激活后的值        cache - 一个包含“linear_cache”和“activation_cache”的字典,我们需要存储它以有效地计算后向传递    """    if activation == "sigmoid":        Z, linear_cache = linear_forward(A_prev, W, b)        A, activation_cache = sigmoid(Z)    elif activation == "relu":        Z, linear_cache = linear_forward(A_prev, W, b)        A, activation_cache = relu(Z)    assert(A.shape == (W.shape[0],A_prev.shape[1]))    cache = (linear_cache,activation_cache)    return A,cache

测试函数L_model_forward_test_case()

def L_model_forward_test_case(): #两层    """     X = np.array([[-1.02387576, 1.12397796], [-1.62328545, 0.64667545], [-1.74314104, -0.59664964]])    parameters = {
'W1': np.array([[ 1.62434536, -0.61175641, -0.52817175], [-1.07296862, 0.86540763, -2.3015387 ]]), 'W2': np.array([[ 1.74481176, -0.7612069 ]]), 'b1': np.array([[ 0.], [ 0.]]), 'b2': np.array([[ 0.]])} """ np.random.seed(1) X = np.random.randn(4,2) W1 = np.random.randn(3,4) b1 = np.random.randn(3,1) W2 = np.random.randn(1,3) b2 = np.random.randn(1,1) parameters = {
"W1": W1, "b1": b1, "W2": W2, "b2": b2} return X, parameters

测试:

#测试L_model_forwardprint("==============测试L_model_forward==============")X,parameters = testCases.L_model_forward_test_case()print(parameters)AL,caches = L_model_forward(X,parameters)print("AL = " + str(AL))print("caches 的长度为 = " + str(len(caches)))print(caches)

返回:

==============测试L_model_forward=============={
'W1': array([[ 0.3190391 , -0.24937038, 1.46210794, -2.06014071], [-0.3224172 , -0.38405435, 1.13376944, -1.09989127], [-0.17242821, -0.87785842, 0.04221375, 0.58281521]]), 'b1': array([[-1.10061918], [ 1.14472371], [ 0.90159072]]), 'W2': array([[ 0.50249434, 0.90085595, -0.68372786]]), 'b2': array([[-0.12289023]])}AL = [[0.17007265 0.2524272 ]]caches 的长度为 = 2[((array([[ 1.62434536, -0.61175641], [-0.52817175, -1.07296862], [ 0.86540763, -2.3015387 ], [ 1.74481176, -0.7612069 ]]), array([[ 0.3190391 , -0.24937038, 1.46210794, -2.06014071], [-0.3224172 , -0.38405435, 1.13376944, -1.09989127], [-0.17242821, -0.87785842, 0.04221375, 0.58281521]]), array([[-1.10061918], [ 1.14472371], [ 0.90159072]])), array([[-2.77991749, -2.82513147], [-0.11407702, -0.01812665], [ 2.13860272, 1.40818979]])), ((array([[0. , 0. ], [0. , 0. ], [2.13860272, 1.40818979]]), array([[ 0.50249434, 0.90085595, -0.68372786]]), array([[-0.12289023]])), array([[-1.58511248, -1.08570881]]))]

 

4.计算成本

def compute_cost(AL,Y):    """    实施等式(4)定义的成本函数。    参数:        AL - 与标签预测相对应的概率向量,维度为(1,示例数量) Y - 标签向量(例如:如果不是猫,则为0,如果是猫则为1),维度为(1,数量) 返回: cost - 交叉熵成本 """ m = Y.shape[1] cost = -np.sum(np.multiply(np.log(AL),Y) + np.multiply(np.log(1 - AL), 1 - Y)) / m cost = np.squeeze(cost) assert(cost.shape == ()) return cost

测试函数:

def compute_cost_test_case():    Y = np.asarray([[1, 1, 1]])    aL = np.array([[.8,.9,0.4]]) return Y, aL

测试:

#测试compute_costprint("==============测试compute_cost==============")Y,AL = testCases.compute_cost_test_case() print("cost = " + str(compute_cost(AL, Y)))

返回:

==============测试compute_cost==============cost = 0.414931599615397

 

5.后向传播

因为最后的输出层使用的是sigmoid函数,隐藏层使用的是Relu函数

所以需要对最后一层进行特殊计算,其他层迭代即可

即A[L],它属于输出层的输出,A[L]=σ(Z[L]),所以我们需要计算dAL,我们可以使用下面的代码来计算它:

dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))

计算完了以后,我们可以使用此激活后的梯度dAL继续向后计算

其实是先通过线性激活部分后向传播得到dz,然后再将dz带入线性部分的后向传播得到dw,db,dA_prev

1)线性部分

 

根据这三个公式来构建后向传播函数

def linear_backward(dZ,cache):    """    为单层实现反向传播的线性部分(第L层)    参数:         dZ - 相对于(当前第l层的)线性输出的成本梯度         cache - 来自当前层前向传播的值的元组(A_prev,W,b)    返回:         dA_prev - 相对于激活(前一层l-1)的成本梯度,与A_prev维度相同 dW - 相对于W(当前层l)的成本梯度,与W的维度相同 db - 相对于b(当前层l)的成本梯度,与b维度相同 """ A_prev, W, b = cache m = A_prev.shape[1] dW = np.dot(dZ, A_prev.T) / m db = np.sum(dZ, axis=1, keepdims=True) / m dA_prev = np.dot(W.T, dZ) assert (dA_prev.shape == A_prev.shape) assert (dW.shape == W.shape) assert (db.shape == b.shape) return dA_prev, dW, db

 

2)线性激活部分

将线性部分也使用了进来

在dnn_utils.py中定义了两个现成可用的后向函数,用来帮助计算dz:

如果 g(.)是激活函数, 那么sigmoid_backward 和 relu_backward 这样计算:

  • sigmoid_backward:实现了sigmoid()函数的反向传播,用来计算dz为:
dZ = sigmoid_backward(dA, activation_cache)
  • relu_backward: 实现了relu()函数的反向传播,用来计算dz为:
dZ = relu_backward(dA, activation_cache)

 

 后向函数为:

def sigmoid_backward(dA, cache):    """    Implement the backward propagation for a single SIGMOID unit.    Arguments:    dA -- post-activation gradient, of any shape    cache -- 'Z' where we store for computing backward propagation efficiently Returns: dZ -- Gradient of the cost with respect to Z """ Z = cache s = 1/(1+np.exp(-Z)) dZ = dA * s * (1-s) assert (dZ.shape == Z.shape) return dZ def relu_backward(dA, cache): """ Implement the backward propagation for a single RELU unit. Arguments: dA -- post-activation gradient, of any shape cache -- 'Z' where we store for computing backward propagation efficiently Returns: dZ -- Gradient of the cost with respect to Z """ Z = cache dZ = np.array(dA, copy=True) # just converting dz to a correct object. # When z <= 0, you should set dz to 0 as well. dZ[Z <= 0] = 0 assert (dZ.shape == Z.shape) return dZ

 

代码为:

def linear_activation_backward(dA,cache,activation="relu"):    """    实现LINEAR-> ACTIVATION层的后向传播。 参数: dA - 当前层l的激活后的梯度值 cache - 我们存储的用于有效计算反向传播的值的元组(值为linear_cache,activation_cache) activation - 要在此层中使用的激活函数名,字符串类型,【"sigmoid" | "relu"】 返回: dA_prev - 相对于激活(前一层l-1)的成本梯度值,与A_prev维度相同 dW - 相对于W(当前层l)的成本梯度值,与W的维度相同 db - 相对于b(当前层l)的成本梯度值,与b的维度相同 """ linear_cache, activation_cache = cache #其实是先通过线性激活部分后向传播得到dz,然后再将dz带入线性部分的后向传播得到dw,db,dA_prev if activation == "relu": dZ = relu_backward(dA, activation_cache) dA_prev, dW, db = linear_backward(dZ, linear_cache) elif activation == "sigmoid": dZ = sigmoid_backward(dA, activation_cache) dA_prev, dW, db = linear_backward(dZ, linear_cache) return dA_prev,dW,db

 

整合函数,用于多层神经网络:

def L_model_backward(AL,Y,caches):    """    对[LINEAR-> RELU] *(L-1) - > LINEAR - > SIGMOID组执行反向传播,就是多层网络的向后传播    参数:     AL - 概率向量,正向传播输出层的输出(L_model_forward())     Y - 标签向量,真正正确的结果(例如:如果不是猫,则为0,如果是猫则为1),维度为(1,数量)     caches - 包含以下内容的cache列表:                 linear_activation_forward("relu")的cache,不包含输出层                 linear_activation_forward("sigmoid")的cache    返回:     grads - 具有梯度值的字典              grads [“dA”+ str(l)] = ...              grads [“dW”+ str(l)] = ...              grads [“db”+ str(l)] = ...    """    grads = {}    L = len(caches)    m = AL.shape[1] #得到数据量,几张照片    Y = Y.reshape(AL.shape) #保证AL和Y两者格式相同    dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL)) #计算得到dAL    current_cache = caches[L-1] #用于输出层的cache存储的值    #对输出层进行后向传播    grads["dA" + str(L)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL, current_cache, "sigmoid")    for l in reversed(range(L-1)): #迭代对接下来的隐藏层进行后向传播        current_cache = caches[l]        dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" + str(l + 2)], current_cache, "relu")        grads["dA" + str(l + 1)] = dA_prev_temp        grads["dW" + str(l + 1)] = dW_temp        grads["db" + str(l + 1)] = db_temp    return grads

 

测试函数:

def L_model_backward_test_case(): #计算后向传播的前向传播的值    """    X = np.random.rand(3,2)    Y = np.array([[1, 1]])    parameters = {
'W1': np.array([[ 1.78862847, 0.43650985, 0.09649747]]), 'b1': np.array([[ 0.]])} aL, caches = (np.array([[ 0.60298372, 0.87182628]]), [((np.array([[ 0.20445225, 0.87811744], [ 0.02738759, 0.67046751], [ 0.4173048 , 0.55868983]]), np.array([[ 1.78862847, 0.43650985, 0.09649747]]), np.array([[ 0.]])), np.array([[ 0.41791293, 1.91720367]]))]) """ np.random.seed(3) AL = np.random.randn(1, 2) Y = np.array([[1, 0]]) A1 = np.random.randn(4,2) W1 = np.random.randn(3,4) b1 = np.random.randn(3,1) Z1 = np.random.randn(3,2) linear_cache_activation_1 = ((A1, W1, b1), Z1) A2 = np.random.randn(3,2) W2 = np.random.randn(1,3) b2 = np.random.randn(1,1) Z2 = np.random.randn(1,2) linear_cache_activation_2 = ( (A2, W2, b2), Z2) caches = (linear_cache_activation_1, linear_cache_activation_2) return AL, Y, caches

测试:

#测试L_model_backwardprint("==============测试L_model_backward==============")AL, Y_assess, caches = testCases.L_model_backward_test_case()grads = L_model_backward(AL, Y_assess, caches)print ("dW1 = "+ str(grads["dW1"]))print ("db1 = "+ str(grads["db1"]))print ("dA1 = "+ str(grads["dA1"]))

返回:

==============测试L_model_backward==============dW1 = [[0.41010002 0.07807203 0.13798444 0.10502167] [0.         0.         0.         0.        ] [0.05283652 0.01005865 0.01777766 0.0135308 ]]db1 = [[-0.22007063] [ 0.        ] [-0.02835349]]dA1 = [[ 0.          0.52257901] [ 0.         -0.3269206 ] [ 0.         -0.32070404] [ 0.         -0.74079187]]

 

6.更新参数

根据上面后向传播得到的dw,db,dA_prev来更新参数,其中 α 是学习率

函数:

def update_parameters(parameters, grads, learning_rate):    """    使用梯度下降更新参数    参数:     parameters - 包含你的参数的字典,即w和b     grads - 包含梯度值的字典,是L_model_backward的输出    返回:     parameters - 包含更新参数的字典 参数[“W”+ str(l)] = ... 参数[“b”+ str(l)] = ... """ L = len(parameters) // 2 #整除2,得到层数 for l in range(L): parameters["W" + str(l + 1)] = parameters["W" + str(l + 1)] - learning_rate * grads["dW" + str(l + 1)] parameters["b" + str(l + 1)] = parameters["b" + str(l + 1)] - learning_rate * grads["db" + str(l + 1)] return parameters

测试函数:

def update_parameters_test_case():    """    parameters = {
'W1': np.array([[ 1.78862847, 0.43650985, 0.09649747], [-1.8634927 , -0.2773882 , -0.35475898], [-0.08274148, -0.62700068, -0.04381817], [-0.47721803, -1.31386475, 0.88462238]]), 'W2': np.array([[ 0.88131804, 1.70957306, 0.05003364, -0.40467741], [-0.54535995, -1.54647732, 0.98236743, -1.10106763], [-1.18504653, -0.2056499 , 1.48614836, 0.23671627]]), 'W3': np.array([[-1.02378514, -0.7129932 , 0.62524497], [-0.16051336, -0.76883635, -0.23003072]]), 'b1': np.array([[ 0.], [ 0.], [ 0.], [ 0.]]), 'b2': np.array([[ 0.], [ 0.], [ 0.]]), 'b3': np.array([[ 0.], [ 0.]])} grads = { 'dW1': np.array([[ 0.63070583, 0.66482653, 0.18308507], [ 0. , 0. , 0. ], [ 0. , 0. , 0. ], [ 0. , 0. , 0. ]]), 'dW2': np.array([[ 1.62934255, 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. ]]), 'dW3': np.array([[-1.40260776, 0. , 0. ]]), 'da1': np.array([[ 0.70760786, 0.65063504], [ 0.17268975, 0.15878569], [ 0.03817582, 0.03510211]]), 'da2': np.array([[ 0.39561478, 0.36376198], [ 0.7674101 , 0.70562233], [ 0.0224596 , 0.02065127], [-0.18165561, -0.16702967]]), 'da3': np.array([[ 0.44888991, 0.41274769], [ 0.31261975, 0.28744927], [-0.27414557, -0.25207283]]), 'db1': 0.75937676204411464, 'db2': 0.86163759922811056, 'db3': -0.84161956022334572} """ np.random.seed(2) W1 = np.random.randn(3,4) b1 = np.random.randn(3,1) W2 = np.random.randn(1,3) b2 = np.random.randn(1,1) parameters = { "W1": W1, "b1": b1, "W2": W2, "b2": b2} np.random.seed(3) dW1 = np.random.randn(3,4) db1 = np.random.randn(3,1) dW2 = np.random.randn(1,3) db2 = np.random.randn(1,1) grads = {"dW1": dW1, "db1": db1, "dW2": dW2, "db2": db2} return parameters, grads

测试:

#测试update_parametersprint("==============测试update_parameters==============")parameters, grads = testCases.update_parameters_test_case() parameters = update_parameters(parameters, grads, 0.1) print ("W1 = "+ str(parameters["W1"])) print ("b1 = "+ str(parameters["b1"])) print ("W2 = "+ str(parameters["W2"])) print ("b2 = "+ str(parameters["b2"]))

返回:

==============测试update_parameters==============W1 = [[-0.59562069 -0.09991781 -2.14584584  1.82662008] [-1.76569676 -0.80627147 0.51115557 -1.18258802] [-1.0535704 -0.86128581 0.68284052 2.20374577]] b1 = [[-0.04659241] [-1.28888275] [ 0.53405496]] W2 = [[-0.55569196 0.0354055 1.32964895]] b2 = [[-0.84610769]]

 

7.整合函数——训练

def L_layer_model(X, Y, layers_dims, learning_rate=0.0075, num_iterations=3000, print_cost=False,isPlot=True):    """    实现一个L层神经网络:[LINEAR-> RELU] *(L-1) - > LINEAR-> SIGMOID。    参数:        X - 输入的数据,维度为(n_x,例子数)        Y - 标签,向量,0为非猫,1为猫,维度为(1,数量)        layers_dims - 层数的向量,维度为(n_y,n_h,···,n_h,n_y)        learning_rate - 学习率        num_iterations - 迭代的次数        print_cost - 是否打印成本值,每100次打印一次        isPlot - 是否绘制出误差值的图谱    返回:     parameters - 模型学习的参数。 然后他们可以用来预测。    """    np.random.seed(1)    costs = []        #随机初始化参数    parameters = initialize_parameters_deep(layers_dims)    for i in range(0,num_iterations):        AL , caches = L_model_forward(X,parameters) #前向传播        cost = compute_cost(AL,Y) #成本计算        grads = L_model_backward(AL,Y,caches) #后向传播        parameters = update_parameters(parameters,grads,learning_rate) #更新参数        #打印成本值,如果print_cost=False则忽略        if i % 100 == 0:            #记录成本            costs.append(cost)            #是否打印成本值            if print_cost:                print("第", i ,"次迭代,成本值为:" ,np.squeeze(cost))    #迭代完成,根据条件绘制图    if isPlot:        plt.plot(np.squeeze(costs))        plt.ylabel('cost')        plt.xlabel('iterations (per tens)')        plt.title("Learning rate =" + str(learning_rate))        plt.show()    return parameters

我们现在开始加载数据集,图像数据集的处理可以参照

train_set_x_orig , train_set_y , test_set_x_orig , test_set_y , classes = lr_utils.load_dataset()train_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T test_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).Ttrain_x = train_x_flatten / 255train_y = train_set_ytest_x = test_x_flatten / 255test_y = test_set_y

数据集加载完成,开始正式训练:

layers_dims = [12288, 20, 7, 5, 1] #  5-layer modelparameters = L_layer_model(train_x, train_y, layers_dims, num_iterations = 2500, print_cost = True,isPlot=True)

返回:

第 0 次迭代,成本值为: 0.715731513413713第 100 次迭代,成本值为: 0.6747377593469114第 200 次迭代,成本值为: 0.6603365433622127第 300 次迭代,成本值为: 0.6462887802148751第 400 次迭代,成本值为: 0.6298131216927773第 500 次迭代,成本值为: 0.606005622926534第 600 次迭代,成本值为: 0.5690041263975135第 700 次迭代,成本值为: 0.519796535043806第 800 次迭代,成本值为: 0.46415716786282285第 900 次迭代,成本值为: 0.40842030048298916第 1000 次迭代,成本值为: 0.37315499216069037第 1100 次迭代,成本值为: 0.30572374573047123第 1200 次迭代,成本值为: 0.2681015284774084第 1300 次迭代,成本值为: 0.23872474827672593第 1400 次迭代,成本值为: 0.20632263257914712第 1500 次迭代,成本值为: 0.17943886927493544第 1600 次迭代,成本值为: 0.15798735818801213第 1700 次迭代,成本值为: 0.14240413012273928第 1800 次迭代,成本值为: 0.12865165997885833第 1900 次迭代,成本值为: 0.11244314998155475第 2000 次迭代,成本值为: 0.08505631034966661第 2100 次迭代,成本值为: 0.05758391198605767第 2200 次迭代,成本值为: 0.044567534546938604第 2300 次迭代,成本值为: 0.03808275166597662第 2400 次迭代,成本值为: 0.034410749018403006

图示:

 

8.预测

def predict(X, y, parameters):    """    该函数用于预测L层神经网络的结果,当然也包含两层    参数:     X - 测试集     y - 标签     parameters - 训练模型得到的最优参数 返回: p - 给定数据集X的预测 """ m = X.shape[1] n = len(parameters) // 2 # 神经网络的层数 p = np.zeros((1,m)) #根据参数前向传播 probas, caches = L_model_forward(X, parameters) for i in range(0, probas.shape[1]): if probas[0,i] > 0.5: p[0,i] = 1 else: p[0,i] = 0 print("准确度为: " + str(float(np.sum((p == y))/m))) return p

预测函数构建好了我们就开始预测,查看训练集和测试集的准确性:

pred_train = predict(train_x, train_y, parameters) #训练集pred_test = predict(test_x, test_y, parameters) #测试集

返回:

准确度为: 0.9952153110047847准确度为: 0.78

可见多层神经网络训练的效果比两层的要更好一些

 

转载于:https://www.cnblogs.com/wanghui-garcia/p/10599290.html

你可能感兴趣的文章
css后代选择器(div.class中间不带空格)
查看>>
在CentOS下利用Python+selenium获取腾讯首页的今日话题。
查看>>
Chapter 2 Open Book——38
查看>>
word break相关问题的解法
查看>>
java中Scanner的nextLine()和next()的区别
查看>>
Dig
查看>>
21:二维数组右上左下遍历
查看>>
android camera(一):camera模组CMM介绍【转】
查看>>
BZOJ 2821: 作诗(Poetize) [分块]
查看>>
TCP协议三次握手过程分析
查看>>
set排序(个人模版)
查看>>
Codeforces Round #404 (Div. 2) D. Anton and School - 2 数学
查看>>
windows进程中的几个杂项-hpguard 进程终止
查看>>
Window 7 + Ubuntu 双系统安装
查看>>
instance 怎么获得自己的 Metadata - 每天5分钟玩转 OpenStack(169)
查看>>
以AVL树为例理解二叉树的旋转(Rotate)操作
查看>>
Maven可以提交到官方公共仓库maven.org
查看>>
学霸也要会看书
查看>>
解读tensorflow之rnn 的示例 ptb_word_lm.py
查看>>
Linux内核--并发【转】
查看>>